

Making Global Business Happen

Developer’s API Guide
IPS eWallet Web Services

International Payout Systems

2/5/2016

The following information is provided to the recipient for the purpose of review and integration of the processing platform
and concepts of International Payout Systems, Inc. All subjects matter and content display methodology contained herein
is the proprietary property of International Payout Systems, Inc. This information has been provided to authorized users
only.

2

Legal Notice

International Payout Systems, Inc. (IPS) Developers API Guide contains information proprietary to IPS, and is

intended only to be used in conjunction with IPS products and services.

This Developers API Guide contains information protected by copyright. No part of this manual may be

photocopied or reproduced in any form without prior written consent from IPS. Information contained in this

manual is subject to change without notice.

3

Revision History
Date Version Description Author

9/30/13 4.0 Initial version from complete API Dima Polyakov

10/15/2013 4.1 [add] eWallet_GetCustomerDetails Julian Garvin

12/10/2013 4.2 [add] eWallet Workflow Julian Garvin

4/15/2014 4.3 Added JSON adapter Dharmendar Mothe

7/2/2014 4.4 Performance notes Dima Polyakov

7/15/2014 4.5 New “hash” parameter in notifications Dima Polyakov

10/23/2014 4.6 Added new function eWallet_UpdateUserName Dharmendar Mothe

11/14/2014 4.7 Added new function eWallet_RefundToCustomer Dharmendar Mothe

2/12/2015 4.9 Updated Self user registration method (FAQ) Dharmendar Mothe

5/29/2015 4.10 Added some more existing functions
eWallet_CheckIfUserNameExists
eWallet_DeclineMerchantPayment
eWallet_UpdateUserAccountStatus
eWallet_RefundPaymentToMerchant
eWallet_RefundPartialPaymentToMerchant

Dharmendar Mothe

2/5/2016 4.11 Added numeric values to ENUMs in Appendixes A
& F

Danny Gonzalez

4

Contents
Revision History ... 3

IPS eWallet Web Service .. 6

General eWallet Workflow .. 6

Test web service ... 7

Production web service.. 7

Performance notes .. 7

eWallet API Functions .. 8

eWallet_RegisterUser .. 8

eWallet_GetCurrencyBalance .. 9

eWallet_GetCustomerDetails .. 10

eWallet_Load ... 10

eWallet_GetUserAccountStatus .. 12

eWallet_UpdateUserAccountStatus .. 12

eWallet_AddCheckoutItems .. 13

eWallet_GetCheckoutItems ... 15

eWallet_RequestUserAutoLogin .. 16

eWallet_GetUserRecurringPayins .. 17

eWallet_GetUserActiveRecurringPayins .. 17

eWallet_ClearUserRecurringPayins ... 18

eWallet_RemoveUserRecurringPayin .. 18

eWallet_ActivateUserRecurringPayin .. 18

eWallet_AddUserRecurringPayin... 19

eWallet_UpdateUserRecurringPayin ... 20

eWallet_UpdateUserName .. 21

eWallet_CheckIfUserNameExists ... 21

eWallet_DeclineMerchantPayment ... 22

eWallet_RefundToCustomer ... 22

eWallet_RefundPaymentToMerchant ... 23

eWallet_RefundPartialPaymentToMerchant .. 23

eWallet Login/Password verification ... 25

5

Via page call (GET).. 25

Notifications ... 26

Payment completion .. 26

Recurring Payment completion ... 26

New Account Created .. 26

Account Status Notification of Change .. 26

Manual Merchant Deposit ... 26

Web Service HTTP Adapter .. 27

Web Service JSON Adapter .. 29

PHP Examples ... 32

Appendix A – Status Constants .. 34

Appendix B – Currency Codes .. 36

Appendix C – Transaction Status Codes ... 36

Appendix D – Custom Objects ... 37

Appendix E – Custom Data Types (Enums) .. 39

6

IPS eWallet Web Service
eWallet Web Service is written in C# .Net 4.0

General eWallet Workflow
1. All members of your program should have eWallet accounts and registered using the function

eWallet_RegisterUser. As users register in your system, you should automatically register an eWallet for

them as well.

Note: Once a user is registered with an eWallet, our system will automatically send a welcome email to

the user with a confirmation link the user should click on in order to verify their email.

2. Once users are registered you will be able to accept payments from them. To do so, you will need to call

the function eWallet_AddCheckoutItems. This will add an invoice to the user’s eWallet account and

they will need to login to their account to complete this payment.

*We highly recommend the use of the auto login (eWallet_RequestUserAutoLogin) so that as the user

requests to make a purchase in your system, you automatically log them into their eWallet so they can

complete their payment seamlessly.

When using eWallet_AddCheckoutItems, there are several things to note:

a. A pending invoice(s) will be added to the specified eWallet. Once the user is logged into their

eWallet, they will have multiple payments options to choose from (cash, bank transfer, wire, etc.)

b. Once the payment is complete, a notification will be sent out to the notification URL that you specify

in our management console.

*Details on the notification parameters as well as how to setup your notification URL can be found

in the eWallet_AddCheckoutItems section.

3. In order to issue commission payouts, do payroll, etc., the function eWallet_Load should be called. This

will create a batch of eWallet loads in our management system that will need to be approved by a

manager to be processed. Auto loads (skipping manual approval) can be setup upon request.

7

Test web service
URL: https://www.testewallet.com/eWalletWS/ws_eWallet.asmx
not recommended, use HTTP/JSON adapter
You can use test web service to integrate your system with IPS platform and register test users, place test
transactions, and “play” with the system using test management console and test user’s front end a website.
Please contact IPS to obtain your API Merchant ID and Password.

Production web service
URL: https://www.i-payout.net/eWalletWS/ws_eWallet.asmx
not recommended, use HTTP/JSON adapter
Production web service is the same as it is in the test environment, except that all users and transactions are real
and there are fees involved per user/transaction. Please contact IPS to obtain your API Merchant ID and Password.

Performance notes
Web service is driven by SOAP protocol that is in essence an XML. As convenient it might be using SOAP protocol

in modern IDEs like MS Visual Studio, there is a performance penalty that each side (client and server) will suffer

due to overhead of parsing XML and significant increase in data traffic. For example, average SOAP call to

eWallet web service will be about 3.5kb, while the same call by using HTTP adapter will be only 900 bytes. On a

magnitude of thousands calls, it might be a significant internet traffic difference between SOAP protocol and

HTTP/JSON adapter.

It is highly recommended to use HTTP adapter or JSON adapter over traditional SOAP. Please review the

examples in www.i-payout.com/api for HTTP/JSON adapters.

Please use production web service only after you have successfully passed all tests by using test web service.

If you use PHP, ASP, Perl, FoxPro, Java or .NET, it is highly recommended to use Web Service HTTP or JSON
Adapter described in this document (please also see section “Performance notes”). You can also find examples:
https://www.i-payout.com/api.

Please DO NOT USE PHP web service components that call WSDL before every function call. It is very inefficient
as WSDL file is very big and your servers will suffer a performance and communication speed degradation.

http://www.i-payout.com/api
https://www.i-payout.com/api

8

eWallet API Functions

eWallet_RegisterUser
This function creates a user and his or her eWallet in the system.

Response eWallet_RegisterUser(Guid MerchantGUID, String MerchantPassword, String UserName, String
FirstName, String LastName, String CompanyName, String Address1, String Address2, String City, String
State, String ZipCode, String Country2xFormat, String PhoneNumber, String CellPhoneNumber, String
EmailAddress, String SSN, String CompanyTaxID, String GovernmentID, String MilitaryID, String
PassportNumber, String DriversLicense, DateTime DateOfBirth, String WebsitePassword, String
DefaultCurrency, Boolean SkipAutoSVCOrder, String PreferredLanguage, Boolean IsBusinessUser, String
BusinessUserName)

Input Fields:

Request Field Data Type Required Comment

MerchantGUID Guid Yes Merchant’s ID.

MerchantPassword String Yes Merchant’s password.

UserName String Yes Unique user name. It can be in any format.

FirstName String Yes User’s first name.

LastName String Yes User’s last name.

CompanyName String No User’s business name if own any

Address1 String No User’s home/business address.

Address2 String No

City String No

State String No For US users state should be in 2 character format like FL, TX.
For non US users, state might be an empty string.

ZipCode String No For US users ZIP code should be in numeric format. For non US
users it can be in any format that is used by his or her country.

Country2xFormat String No Country should be in 2 character format, like US, CA.
If not specified, default country is US

PhoneNumber String No User’s phone number

CellPhoneNumber String No User’s cell phone number. This number can be used for SMS
notifications.

EmailAddress String Yes Upon registration and after any financial activity, user will
receive an email into this address.

SSN String No User’s social security number (US only).

CompanyTaxID String No Company’s EIN number (US only).

GovernmentID String No Government ID. It can be for example a cedula number in some
South American countries.

MilitaryID String No Military ID if person does not have SSN.

PassportNumber String No Required if any other id is not applicable.

DriversLicense String No

9

DateOfBirth DateTime Yes User’s date of birth. Should be 18 or older. If date of birth is
not known, please set it to: 1/1/1900. It will be asked on a first
user login.

WebsitePassword String No Login password to eWallet. If not specified a random password
will be generated and email will be sent to the user. Cannot
contain spaces or the symbols “<” or “>”.

DefaultCurrency String No Default currency of the eWallet. This currency code is used to
pay non-transaction based fees, like: monthly maintenance
fees, phone support, and so on. Transaction based fees (like
eWallet to Bank account) are paid in the currency of that
transaction. If not specified, it will be USD

SkipAutoSVCOrder Boolean No If this flag is set to TRUE, auto prepaid card order will be
skipped (no card will be ordered). This setting does not have an
effect if auto ordering of prepaid cards is not set.

PreferredLanguage String No Preferred language code that will be used for email
communications: EN – English, DE – German, and so on. If not
specified, it will be EN

IsBusinessUser Boolean No Default value should be FALSE.
Set TRUE if this user should be marked as a business user (only
if merchant setup allows business users in the program).

BusinessUserName String No Business user name to whom to affiliate this user to (only if
merchant setup allows business users in the program).

Return:

Response Field Data Type Comment

m_Code StatusConstants See appendix A.

m_Text String Code and error description.

TransactionRefID Int64 User’s ID in IPS platform.

Example:

eWallet_GetCurrencyBalance
This function gets user’s eWallet balance in the system.

Response eWallet_GetCurrencyBalance(Guid MerchantGUID, String MerchantPassword,
String UserName, String CurrencyCode, out Decimal Balance)

Input Fields:

Request Field Data Type Required Comment

MerchantGUID Guid Yes Merchant’s ID.

MerchantPassword String Yes Merchant’s password.

UserName String Yes Unique user name. It can be in any format.

CurrencyCode String Yes 3 character currency code.

Return:

Response Field Data Type Comment

m_Code StatusConstants See appendix A.

m_Text String Code and error description.

Balance Decimal Current eWallet balance.

10

eWallet_GetCustomerDetails
This function gets various user information.

Response eWallet_GetCustomerDetails(Guid MerchantGUID, String MerchantPassword,
String UserName, out CustomerResponse response)

Input Fields:

Request Field Data Type Required Comment

MerchantGUID Guid Yes Merchant’s ID.

MerchantPassword String Yes Merchant’s password.

UserName String Yes Unique user name. It can be in any format.

Return:

Response Field Data Type Comment

m_Code StatusConstants See appendix A.

m_Text String Code and error description.

response CustomerResponse Customer object with user’s info. See appendix E.

eWallet_Load
This function makes a request to load eWallets.

Response eWallet_Load(Guid MerchantGUID, String MerchantPassword,

String PartnerBatchID, String PoolID, eWalletLoad[] arrAccounts, Boolean AllowDuplicates,
Boolean AutoLoad, String CurrencyCode)

Input Fields:

Request Field Data Type Required Comment

MerchantGUID Guid Yes Merchant’s ID.

MerchantPassword String Yes Merchant’s password.

PartnerBatchID String Yes It is a parameter that is used to group all loads into
one batch. You may call Wallet_Load multiple times,
and as long as the PartnerBatchID is the same. Please
note that PartnerBatchID is used as a batch name in
the management console. The best practice is to use
a value that is easy readable like, “payout for
commissions on 3/12/2012”.

PoolID String No Payout pool/level/tier. If you do not use pools, just
leave it blank. This field is just a reference.

arrAccounts eWalletLoad Yes Array of eWallet accounts to load. See appendix E.

AllowDuplicates Boolean Yes Allow multiple same user names in the same
PartnerBatchID

AutoLoad Boolean Yes If set to TRUE - automatically approve and load
payout into eWallets. A batch will be automatically
closed, and no other loads can be added into this
batch.

11

NOTE: This flag must be enabled on IPS’ side first. To
enable, please send a request via email to
compliance@i-payout.com. Once batch is approved
and loaded, there is no way to cancel it. Please use
this flag only when you double checked on your end
that payout transactions you submit are legit and
correct.

CurrencyCode String Yes Currency code of the transaction.

Return:

Response Field Data Type Comment

m_Code StatusConstants See appendix A.

m_Text String Code and error description.

• If AutoLoad = false and return is NO_ERROR, eWallet loads are ready to be manually approved. To load

eWallets a manager with sufficient permissions needs to approve payout by to logging into IPS

management console and go to menu EWALLET -> Payout Requests Management. On that page, a

manager can find all the payout batches to approve and make changes if necessary. Once a manager

approves a batch, depending on your merchant setting, either all eWallet accounts will be loaded

automatically or IPS management will need to confirm this load. This flag must be enabled on IPS’ side

first. To enable, please send a request via email to compliance@i-payout.com

• Once batch is approved by management, it cannot be modified by adding more payouts. If it is needed

to make new payouts a new PartnerBatchID should be provided.

Example:

eWallet.ws_eWallet ew = new eWallet.ws_eWallet();

List<eWallet.eWalletLoad> arrAccounts = new List<eWallet.eWalletLoad>();

eWallet.eWalletLoad acc1 = new eWallet.eWalletLoad();
acc1.UserName = "ip001";
acc1.Amount = 100;
acc1.Comments = "Commission payout";// user will see it in the history
acc1. MerchantReferenceID = "abc123001";// user will not see it in the history
arrAccounts.Add(acc1);

eWallet.eWalletLoad acc2 = new eWallet.eWalletLoad();
acc2.UserName = "ip002";
acc2.Amount = 200;
acc2.Comments = “Reimbursement for order #12345”;
acc2. MerchantReferenceID = "abc123002";
arrAccounts.Add(acc2);

eWallet.Response resp = ew.eWallet_Load(MerchantGUID, MerchantPassword,
 "load 3/12/2012", "level 1", arrAccounts.ToArray(), true, true, “USD”);

mailto:compliance@i-payout.com

12

if(resp.m_Code == eWallet.StatusConstants.NO_ERROR) { // SUCCESS
 …
} else {// FAILED
 String Error = resp.m_Text;
}

eWallet_GetUserAccountStatus
This function is used to get user’s account status.

CustomerAccountStatusResponse eWallet_GetUserAccountStatus (Guid MerchantGUID, String
MerchantPassword, String UserName)

Input Fields:

Request Field Data Type Required Comment

MerchantGUID Guid Yes Merchant’s ID.

MerchantPassword String Yes Merchant’s password.

UserName String Yes User name.

Return:

Response Field Data Type Comment

m_Code StatusConstants See appendix A.

m_Text String Code and error description.

AccStatus CustomerAccountStatus Status of the account: (see appendix F)

• Closed – account is closed. User still can login only
if there is balance on the account. System will send
weekly emails saying to move funds out and user
might be charged with a dormant fee.

• Suspended – account is suspended. User cannot
login at any case.

• Opened – account is alive. User can send/receive
funds.

eWallet_UpdateUserAccountStatus
This function is used to manually set a user account status into Closed, Suspended, or Open state.
NOTE: Users cannot login into suspended accounts, but users can log into closed accounts only if they have
money on their eWallet to move out.

Response eWallet_UpdateUserAccountStatus (Guid MerchantGUID, String MerchantPassword, String
 UserName, CustomerAccountStatus Status)

Input Fields:

Request Field Data Type Required Comment

MerchantGUID Guid Yes Merchant’s ID.

MerchantPassword String Yes Merchant’s password.

UserName String Yes User name.

13

Status CustomerAccountStatus Yes Status of the account: (see appendix F)

• Closed – account is closed. User still
can login only if there is balance on
the account.

• Suspended – account is suspended.
User cannot login at any case.

• Open – account is alive. User can
send/receive funds.

Return:

Response Field Data Type Comment

m_Code StatusConstants See appendix A.

m_Text String Code and error description.

eWallet_AddCheckoutItems
This function is used to add items to purchase into eWallet check out page.

Response eWallet_AddCheckoutItems(Guid MerchantGUID, String MerchantPassword,
String UserName, CheckoutItem[] arrItems, Boolean AutoChargeAccount,
out Response[] arrItemsResponse)

Input Fields:

Request Field Data
Type

Required Comment

MerchantGUID Guid Yes Merchant’s ID.

MerchantPassword String Yes Merchant’s password.

UserName String Yes User name to check.

arrItems Checkout
Item
array

Yes Array of CheckoutItem items: (See appendix E)
Decimal Amount – cost of the item.
String CurrencyCode – currency code, like USD.
String ItemDescription – description of the item.
String MerchantReferenceID – reference ID in your system. It will be
used in call back once item is paid.
String UserReturnURL – if payment was done instantly (via credit
card or eWallet balance), user can click on this URL after payment.
Boolean MustComplete – flag to set if this payment can be canceled
manually by user. If it is not mandatory for users to complete a
payment, set it to false (recommended value: false).
Boolean IsSubscription – if true this checkout item will generate a
monthly invoice. The first invoice will begin 1 month after this invoice
has been successfully paid.
Decimal SubscriptionAmount – monthly payment amount.

AutoChargeAccount Boolean Yes False (default) – do not charge account automatically. User has to
go to eWallet and confirm and select a payment method.
To avoid unauthorized charges it is recommended to use FALSE
so users can review an invoice and pay using their Security PIN.

14

True – auto charge eWallet account if there is any of:
1) enough balance on eWallet
2) secondary payment account is set: verified bank account (US
only) or credit card (subject to amount limitation per merchant
setup, and a processor can process credit cards without CVV2).
Please contact IPS to allow auto charge account if required

Return:

Response Field Data Type Comment

m_Code StatusConstants See appendix A.

m_Text String Code and error description.

arrItemsResponse Response [] Array of Response objects for each submitted item in
arrItems

Remarks:
This function will try to make:

1. Add a payment to the user
2. If AutoChargeAccount =

True: instantly debit from eWallet. If there are insufficient funds then function will debit from a
secondary payment account. System will send an email to a user about this transaction.
False: System will send an email to a user to complete this transaction.

3. If function returned in arrItemsResponse m_Code =
a. eWallet.StatusConstants.NO_ERROR – transaction was processed and completed successfully.
b. eWallet.StatusConstants.PROCESSING – transaction was submitted without user interaction and

it will take some time to complete this payment (for example, if default account is bank account
(ACH) then it will take 2-3 days to complete).

c. eWallet.StatusConstants.PENDING – transaction could not be submitted at this time and user’s
interaction is required. In this case the system will send a notification email to the user to
complete the transaction.

4. You can call the function: eWallet_Load in order to add funds to test payment completions.

Upon a completion or user cancelation of this payment (if MustComplete flag is False), the eWallet notification
system will call Merchant Notify URL with the following parameters:

1. act=PaymentToMerchant
2. status_id=status id of this transaction
3. status_desc=status description
4. trnx_id= MerchantReferenceID
5. log_id=IPS TransactionID (numeric), same as Response.LogTransactionID
6. hash=SHA1 hash of: trnx_id + log_id + MerchantGUID + MerchantPassword

Hash calculation
For example, you received a notification with the following parameters:
trnx_id = 54321, log_id = 8790
Your MerchantGUID = 6d099995-a2f9-4a01-bef1-258eb99c1a77, MerchantPassword = psd123
You would combine them into one string as: 5432187906d099995-e2f9-4a01-bef1-258eb99c1b77psd123

15

and then compute the SHA1 hash of that string, which would generate hash as (in upper case)
F225DA02326628D9444468AB4868A7386D43C912
If your computed hash matches with a received one then this notification is valid and you can process this
payment.

status_id can be only settled (user paid invoice) or voided (user canceled invoice). “Payment to merchant”
transactions cannot have status failed as funds are actually taken from user’s eWallet balance.

Merchant Notify URL page will be called as a POST request with all parameters inside. In a response to that POST
request, your page should write into a response output 2 characters “OK” meaning that you processed this
notification. If “OK” is not received as a response, the eWallet notification system will try to call your page 4
more times with intervals about 1 min apart.

To set up your Merchant Notify URL you need to login into eWallet Management Console and set it up on
System Overview page in the eWallet Setup section.

If IsSubscription = True eWallet_AddCheckoutItems will call internally eWallet_AddUserRecurringPayin
function. But subscription will not be active until this payment settles. When this payment settles a subscription
will become active (initial settlement day) and a next subscription invoice will be posted on user’s eWallet a
month from initial settlement day. All next subsequent invoices will be posted on eWallet every month relative
to initial settlement day. For notifications on subscription payment please take a look at Remarks from
eWallet_AddUserRecurringPayin function.

You can call a web service function eWallet_FindTransaction to get a status of this payment.

If initial payment is not required for the subscription, please use the function “eWallet_AddRecurringPayIn”

eWallet_GetCheckoutItems
This function is used to get information about previously submitted checkout items.

Response eWallet_GetCheckoutItems(Guid MerchantGUID, String MerchantPassword,
String UserName, String MerchantReferenceID, DateTime DateFrom, DateTime DateTo,
TransactionStatus Status, out CheckoutItem[] arrItems)

Input Fields:

Request Field Data Type Required Comment

MerchantGUID Guid Yes Merchant’s ID.

MerchantPassword String Yes Merchant’s password.

UserName String No User name of whom the items were posted to

MerchantReferenceID String No Reference ID in your system

DateFrom DateTime Yes Beginning date to search for items

DateTo DateTime Yes End date to seach for items

Status TransactionStatus
(see Appendix C)

No Transaction status to filter search:

All: Retrieve all transactions regardless of status

16

Pending: Retrieve transactions where no action has
been taken to fund the item.
Processing: Retrieve transactions that was awaiting a
funding transaction to complete (bank transfer, wire,
etc.)
Settled: Retrieve transactions that have been
completed.
Declined: Retrieve transactions that have been
canceled.

Return:

Response Field Data Type Comment

m_Code StatusConstants See appendix A.

m_Text String Code and error description.

arrItems CheckoutItem array Array of CheckoutItems found, (See appendix E)

eWallet_RequestUserAutoLogin
This function is used to auto login a user by using a security parameter.

Response eWallet_RequestUserAutoLogin(Guid MerchantGUID, String MerchantPassword,
 String UserName)
Input Fields:

Request Field Data Type Required Comment

MerchantGUID Guid Yes Merchant’s ID.

MerchantPassword String Yes Merchant’s password.

UserName String Yes User name.

Return:

Response Field Data Type Comment

m_Code StatusConstants See appendix A.

m_Text String Code and error description.

ProcessorTransactionRefNumber String Security parameter

Remarks:
eWallet_RequestUserAutoLogin returns Response object with a field ProcessorTransactionRefNumber set to

security parameter (GUID) that needs to be passed to MemberLogin.aspx page on eWallet website.

For example:

Auto login

https://merchant.globalewallet.com/MemberLogin.aspx?secKey=GUID

merchant = Your merchant name, ie. Demo.globalewallet.com

17

Auto login with page redirect

https://merchant.globalewallet.com/MemberLogin.aspx?secKey=GUID&LoginURL=MerchantProducts.aspx

LoginURL – is a page name in eWallet website.

eWallet_GetUserRecurringPayins
This function is used to get all pay-ins assigned to the user.

Response eWallet_GetUserRecurringPayins(Guid MerchantGUID, String MerchantPassword,
 String UserName, out RecurringPayment[] Payins)

Input Fields:

Request Field Data
Type

Required Comment

MerchantGUID Guid Yes Merchant’s ID.

MerchantPassword String Yes Merchant’s password.

UserName String Yes User name.

Return:

Response Field Data Type Comment

m_Code StatusConstants See appendix A.

m_Text String Code and error description.

Payins RecurringPayment[] Array of recurring payments. See appendix E.

eWallet_GetUserActiveRecurringPayins
This function is used to get all active recurring pay-ins assigned to the user.

Response eWallet_GetUserActiveRecurringPayins(Guid MerchantGUID, String MerchantPassword,
 String UserName, out RecurringPayment[] Payins)

Input Fields:

Request Field Data
Type

Required Comment

MerchantGUID Guid Yes Merchant’s ID.

MerchantPassword String Yes Merchant’s password.

UserName String Yes User name.

Return:

Response Field Data Type Comment

m_Code StatusConstants See appendix A.

m_Text String Code and error description.

Payins RecurringPayment[] Array of recurring payments. See appendix E.

https://merchant.globalewallet.com/MemberLogin.aspx?secKey=GUID&LoginURL=MerchantProducts.aspx

18

eWallet_ClearUserRecurringPayins
This function is used to disable all recurring pay-ins currently assigned to the user.

Response eWallet_ClearUserRecurringPayins(Guid MerchantGUID, String MerchantPassword, String UserName)
Input Fields:

Request Field Data
Type

Required Comment

MerchantGUID Guid Yes Merchant’s ID.

MerchantPassword String Yes Merchant’s password.

UserName String Yes User name.

Return:

Response Field Data Type Comment

m_Code StatusConstants See appendix A.

m_Text String Code and error description.

eWallet_RemoveUserRecurringPayin
This function is used to disable a specific recurring pay-in assigned to the user.

Response eWallet_RemoveUserRecurringPayin(Guid MerchantGUID, String MerchantPassword,
 String UserName, Int64 PayinID, String MerchantReferenceID)
Input Fields:

Request Field Data
Type

Required Comment

MerchantGUID Guid Yes Merchant’s ID.

MerchantPassword String Yes Merchant’s password.

UserName String Yes User name.

PayinID Int64 Yes/No RecurringPaymentID. Set 0 if unknown.

MerchantReferenceID String Yes/No Reference number for this recurring payment. Set empty if
unknown.

Return:

Response Field Data Type Comment

m_Code StatusConstants See appendix A.

m_Text String Code and error description.

eWallet_ActivateUserRecurringPayin
This function is used to re-activate a specific recurring pay-in that was previously disabled.

Response eWallet_ActivateUserRecurringPayin(Guid MerchantGUID, String MerchantPassword,
 String UserName, Int64 PayinID, String MerchantReferenceID)
Input Fields:

Request Field Data
Type

Required Comment

MerchantGUID Guid Yes Merchant’s ID.

19

MerchantPassword String Yes Merchant’s password.

UserName String Yes User name.

PayinID Int64 Yes/No RecurringPaymentID. Set 0 if unknown.

MerchantReferenceID String Yes/No Reference number for this recurring payment. Set empty if
unknown.

Return:

Response Field Data Type Comment

m_Code StatusConstants See appendix A.

m_Text String Code and error description.

eWallet_AddUserRecurringPayin
This function is used to add a monthly recurring pay-ins to the user.

Response eWallet_AddUserRecurringPayin(Guid MerchantGUID, String MerchantPassword,
 String UserName, String Description, Decimal Amount, String CurrencyCode,
 String RetParams, DateTime StartDate, Boolean ClearActiveRecurringPayins,

String MerchantReferenceID, Int64 MaxStackableCount)
Input Fields:

Request Field Data Type Required Comment

MerchantGUID Guid Yes Merchant’s ID.

MerchantPassword String Yes Merchant’s password.

UserName String Yes User name.

Description String Yes Description of the recurring payment.

Amount Decimal Yes Amount to charge.

CurrencyCode String Yes Desired currency

RetParams String Yes Parameters to be returned with
notification URL

StartDate DateTime Yes Date to begin withdrawing payments

ClearActiveRecurringPayins Boolean Yes If true, user’s all current active
recurring payins will be cancelled

MerchantReferenceID String Yes Unique Reference number for this
recurring payment. This is used for
reporting & notification purposes.

MaxStackableCount Int64 Yes Recurring will be cancelled, if user
didnot paid for this number of months.
We recommend maximum of 2 only.

Return:

Response Field Data Type Comment

m_Code StatusConstants See appendix A.

m_Text String Code and error description.

TransactionRefID Int64 Recurring Payment ID (PayinID) in our system

20

Remarks:

• Recurring pay-in tries to takes a full amount first from eWallet. If there are not enough funds the
function will try to get a full amount from a secondary payment account (if any): bank account or credit
card. Once funds are settled a notification will be sent the Merchant Notification URL.

• If user’s payment failed (by any reason), an invoice will be posted on a user’s account and email will be

sent to the user saying that there is a pending invoice to pay.

• To set up your Merchant Notify URL you need to login into eWallet Management Console and set it up
on System Overview page in the eWallet Setup section.

• MerchantReferenceID: This field must be unique for each recurring payment. With all the notifications
regarding this recurring payment, our system will send this reference number to identify the payment.

• If recurring payment is cancelled by user or due to inactivity, our system will send a notification to your
notification URL with the following parameters:

1) act=eWalletRecurringPayment
2) isactive=false
3) trnx_id=MerchantReferenceID
4) ret_params=recurring return parameters
5) cancel_by_user=true/false
6) cancel_by_inactivity=true/false
7) cancel_reason=reason for the cancellation

• On each month, once user completed the recurring payment, our system will send the notification with
the following parameters:

1) act=PaymentToMerchant
2) status_id=status id of this transaction
3) status_desc=status description
4) trnx_id= MerchantReferenceID
5) ret_params=recurring return parameters
6) log_id=IPS TransactionID (numeric), same as Response.LogTransactionID
7) period=payment period in Month/Year format. Ex: 06/2012

eWallet_UpdateUserRecurringPayin
This function is used to update the user monthly recurring pay-in.

Response eWallet_UpdateUserRecurringPayin(Guid MerchantGUID, String MerchantPassword,
 String UserName, Int64 RecurringPaymentID, Decimal NewAmount, String NewCurrencyCode,
 DateTime NewStartDate, String NewMerchantReferenceID, String NewDescription,
 String UserComments)

Input Fields:

Request Field Data Type Required Comment

MerchantGUID Guid Yes Merchant’s ID.

MerchantPassword String Yes Merchant’s password.

UserName String Yes User name.

RecurringPaymentID Int64 Yes Recurring Payment ID of the
subscription.

NewAmount Decimal Yes Updated amount to charge.

NewCurrencyCode String Yes Updated currency

21

NewStartDate DateTime Yes Updated date to begin withdrawing
payments

NewMerchantReferenceID String Yes Unique Reference number for this
recurring payment. This is used for
reporting & notification purposes.

NewDescription String Yes Updated description of the recurring
payment.

UserComments String Yes Small description about the reason to
update. This text will be sent to the
user via email

Return:

Response Field Data Type Comment

m_Code StatusConstants See appendix A.

m_Text String Code and error description.

eWallet_UpdateUserName
Response eWallet_UpdateUserName (Guid MerchantGUID, String MerchantPassword,

String CurrentUserName, String NewUserName, String Comments, out Response response)

Input Fields:

Request Field Data Type Required Comment

MerchantGUID Guid Yes Merchant’s ID.

MerchantPassword String Yes Merchant’s password.

CurrentUserName String Yes Current User name that you want to change

NewUserName String Yes New User name

Comments String No Reason to update

Return:

Response Field Data Type Comment

m_Code StatusConstants See appendix A.

m_Text String Code and error description.

eWallet_CheckIfUserNameExists
This function is used to check if a given user name exists.

Response eWallet_CheckIfUserNameExists(Guid MerchantGUID, String MerchantPassword, String UserName)
Input Fields:

Request Field Data
Type

Required Comment

MerchantGUID Guid Yes Merchant’s ID.

MerchantPassword String Yes Merchant’s password.

UserName String Yes User name to check.

22

Return:

Response Field Data Type Comment

m_Code StatusConstants See appendix A.

m_Text String Code and error description.

eWallet_DeclineMerchantPayment
This function will decline any pending merchant payment (invoice). The function will fail if a payment (invoice) is
already settled, declined, or if there is any funding payment (i.e. Bank Deposit) that is pending as well.

Response eWallet_DeclineMerchantPayment(Guid MerchantGUID, String MerchantPassword,

String MerchantReferenceID)
Input Fields:

Request Field Data Type Required Comment

MerchantGUID Guid Yes Merchant’s ID.

MerchantPassword String Yes Merchant’s password.

MerchantReferenceID String Yes Merchant’s transaction ID.

Return:

Response Field Data Type Comment

m_Code StatusConstants See appendix A.

m_Text String Code and error description.

LogTransactionID Int64 Transaction ID in IPS system.

eWallet_RefundToCustomer
This function is used to refund the customer.

Response eWallet_RefundToCustomer (Guid MerchantGUID, String MerchantPassword,
String UserName, Decimal Amount, String Comments, String MerchantReferenceID,
String CurrencyCode)

Input Fields:

Request Field Data Type Required Comment

MerchantGUID Guid Yes Merchant’s ID.

MerchantPassword String Yes Merchant’s password.

UserName String Yes User Name of the customer

Amount Decimal Yes Amount to credit

Comments String No Reason to credit

MerchantReferenceID String Yes Unique Merchant Transaction ID

CurrencyCode String Yes 3 character ISO currency code

Return:

Response Field Data Type Comment

m_Code StatusConstants See appendix A.

m_Text String Code and error description.

LogTransactionID Int64 Transaction ID in IPS system.

23

eWallet_RefundPaymentToMerchant
This function is used to refund “eWallet to Merchant” transactions. These transactions can be created by using

functions like eWallet_AddCheckoutItems.

Response eWallet_RefundPaymentToMerchant(Guid MerchantGUID, String MerchantPassword,
String UserName, Int64 LogTransactionID, Boolean Refund_FundingTransactionFee, Boolean
Refund_eWalletToMerchantFee, String Comments, String MerchantReferenceID)

Input Fields:

Request Field Data Type Required Comment

MerchantGUID Guid Yes Merchant’s ID.

MerchantPassword String Yes Merchant’s password.

UserName String Yes User name.

LogTransactionID Int64 Yes Log transaction ID that was received from
eWallet_AddCheckoutItems or similar
functions that create invoices.

Refund_FundingTransactionFee Boolean Yes True – return a funding transaction fee from
deposit to eWallet transaction like “Bank to
eWallet” if applicable.

Refund_eWalletToMerchantFee Boolean Yes True – return “eWallet to Merchant” fee.

Comments String No Manager’s comments.

MerchantReferenceID String Yes A unique merchant’s reference id to refund
transaction in merchant’s database.

eWallet_RefundPartialPaymentToMerchant
This function is used to refund partial amount of “eWallet to Merchant” transactions. These transactions can be

created by using functions like eWallet_AddCheckoutItems.

Response eWallet_RefundPartialPaymentToMerchant (Guid MerchantGUID, String MerchantPassword,
String UserName, Int64 LogTransactionID, Decimal Amount, String Comments, String
MerchantReferenceID)

Input Fields:

Request Field Data Type Required Comment

MerchantGUID Guid Yes Merchant’s ID.

MerchantPassword String Yes Merchant’s password.

UserName String Yes User name.

LogTransactionID Int64 Yes Log transaction ID that was received from
eWallet_AddCheckoutItems or similar
functions that create invoices.

Amount Decimal Yes Amount that your want to refund to the
customer. This amount cannot be more than
original invoice amount

Comments String No Manager’s comments.

MerchantReferenceID String Yes A unique merchant’s reference id to refund
transaction in merchant’s database.

24

Return:

Response Field Data Type Comment

m_Code StatusConstants See appendix A.

m_Text String Code and error description.

Remarks:
eWallet_ RefundPartialPaymentToMerchant will refund invoice for the specified amount to customer eWallet.

The way how this function works is it credits back eWallet as “Merchant to eWallet” transactions. Then, if

payment (invoice) was paid by another user (invoice forwarding), that amount will be transferred to that

eWallet. In the case if there was a funding transaction from a credit card, this function will attempt to refund a

used credit card automatically. In all other cases amount will stay on eWallet and user will have to move it

manually. User will also receive an email about this refund and also email will be sent to user who paid an

invoice in the case of forwarding.

25

eWallet Login/Password verification
In order for IPS to verify user’s credentials for eWallet login, IPS can perform a web call to merchant’s

verification page to verify login name and password for this user. This option is valid only for merchants who

want to have unified passwords for users on merchant’s back end office and eWallet sites.

Via page call (GET)
Verify login/password of the user on merchant’s site. Merchants are required to implement a verification web
page if user names and passwords are stored on the merchant’s server. Please contact IPS to register such page.

Example:
https://www.merchant.com/backoffice/validate_user.php?UserName=username&Password=userpassword

The response of this page should be only one character:
“1” – login info was successful
“0” – login failed

26

Notifications
Besides notifications outlined in API functions there are more notifications that eWallet platform can send. All
notification will be sent to Merchant Notify URL. To set up your Merchant Notify URL you need to login into
eWallet Management Console and set it up on System Overview page in eWallet Setup section.

Payment completion
Please see eWallet_AddCheckoutItems function remarks.

Recurring Payment completion
Please see eWallet_AddCheckoutItems AND eWallet_AddUserRecurringPayin functions remarks.

New Account Created
When a new eWallet account is created IPS services will call Merchant Notify URL with the following parameters:

act=AccCREATED&user=UserName

Example: https://www.merchant.com/ips_notifications.php?act=AccCREATED&user=JohnDow

Account Status Notification of Change
If a user account has changed its status IPS services will call Merchant Notify URL with the following parameters:

act=AccNOC&user=UserName&status=[CLOSED|OPENED]

Example: https://www.merchant.com/ips_notifications.php?act=AccNOC&user=JohnSmith&status=CLOSED

Manual Merchant Deposit
If requested, an eWallet transfer option can be added to the eWallet menu to allow users to transfer funds

directly to the merchant, without the need for a specific product. If you would like this option available for your

users, please contact the IPS technical department. When a user successfully completes this transfer, IPS

services will call Merchant Notify URL with the following parameters:

act=ManualMerchantDeposit&user=UserName&amount=Amount¤cyCode=Currency

Example:

https://www.merchant.com/ips_notifications.php?act=ManualMerchantDeposit&user=JohnSmither&amount=

11.67¤cyCode=USD

27

Web Service HTTP Adapter
Web Service HTTP Adapter is http request processor that can execute web service functions using regular form

style POST/GET requests. It could be beneficial for languages that do not directly support web services like ASP,

PHP, and Perl.

Test HTTP Adapter URL:

https://testewallet.com/eWalletWS/ws_Adapter.aspx

Production HTTP Adapter URL:

https://www.i-payout.net/eWalletWS/ws_Adapter.aspx

Here is a format how to call HTTP adapter: URL?fn=functionName¶meters

Where,

URL: HTTP Adapter URL

functionName: name of web service function, like: eWallet_RegisterUser

parameters: function parameters – same as input fields in this documentation per function. Please refer to the

web service WSDL file for correct names of parameters. All required parameters should be passed, all missed

parameters will be treated as: null, false or 0.

Format to make an array: [field1=value1%26field2=value2][field1=value3%26field2=value4]. If value contains

character ‘=’, you will need to double URL encrypt it.

Response format is similar to regular POST/GET format. It consists of Response structure with each member

values are being URL-encoded. In order to parse a response correctly, you have to get a “response” value of a

HTTP response and URL-decode it.

Examples:

1. Register user (eWallet_RegisterUser)

Request:

fn=eWallet_RegisterUser&MerchantGUID=12345678-e2f9-4a01-bef1-258eb99c1b77

&MerchantPassword=12345&UserName=IP001&FirstName=WSTest&LastName=Test&CompanyName=&Addres

s1=2500 E Hallandale Beach Blvd&Address2=Suite 800&City=Hallandale

Beach&State=FL&ZipCode=33009&Country2xFormat=US&PhoneNumber=954-123-

4567&CellPhoneNumber=&EmailAddress=IP001@aol.com&SSN=123-45-

6789&CompanyTaxID=&GovernmentID=&MilitaryID=&PassportNumber=&DriversLicense=&DateOfBirth=9/18/1

945&WebsitePassword=1111&DefaultCurrency=USD

Successful response:

response=m_Code%3dNO_ERROR%26m_Text%3dOK%26LogTransactionID%3d0%26TransactionRefID%3d1302

%26ACHTransactionID%3d0%26ProcessorTransactionRefNumber%3d%26CustomerFeeAmount%3d0%26Curren

cyCode%3d

mailto:Beach&State=FL&ZipCode=33009&Country2xFormat=US&PhoneNumber=954-123-4567&CellPhoneNumber=&EmailAddress=IP001@aol.com&SSN=123-45-6789&CompanyTaxID=&GovernmentID=&MilitaryID=&PassportNumber=&DriversLicense=&DateOfBirth=9/18/1945&WebsitePassword=1111&DefaultCurrency=USD
mailto:Beach&State=FL&ZipCode=33009&Country2xFormat=US&PhoneNumber=954-123-4567&CellPhoneNumber=&EmailAddress=IP001@aol.com&SSN=123-45-6789&CompanyTaxID=&GovernmentID=&MilitaryID=&PassportNumber=&DriversLicense=&DateOfBirth=9/18/1945&WebsitePassword=1111&DefaultCurrency=USD
mailto:Beach&State=FL&ZipCode=33009&Country2xFormat=US&PhoneNumber=954-123-4567&CellPhoneNumber=&EmailAddress=IP001@aol.com&SSN=123-45-6789&CompanyTaxID=&GovernmentID=&MilitaryID=&PassportNumber=&DriversLicense=&DateOfBirth=9/18/1945&WebsitePassword=1111&DefaultCurrency=USD
mailto:Beach&State=FL&ZipCode=33009&Country2xFormat=US&PhoneNumber=954-123-4567&CellPhoneNumber=&EmailAddress=IP001@aol.com&SSN=123-45-6789&CompanyTaxID=&GovernmentID=&MilitaryID=&PassportNumber=&DriversLicense=&DateOfBirth=9/18/1945&WebsitePassword=1111&DefaultCurrency=USD

28

Error response:

response=m_Code%3dINTERNAL_ERROR%26m_Text%3dSSN+is+Required+for+US+Customers%26LogTransactio

nID%3d0%26TransactionRefID%3d0%26ACHTransactionID%3d0%26ProcessorTransactionRefNumber%3d%26Cu

stomerFeeAmount%3d0%26CurrencyCode%3d

2. Get Customer Balance (eWallet_GetCurrencyBalance)

Request:

fn=eWallet_GetCurrencyBalance&MerchantGUID=12345678-e2f9-4a01-bef1-

258eb99c1b77&MerchantPassword=12345&UserName=IP001&CurrencyCode=USD

Response:

response=m_Code%3dNO_ERROR%26m_Text%3dOK%26LogTransactionID%3d0%26TransactionRefID%3d0%26

ACHTransactionID%3d0%26ProcessorTransactionRefNumber%3d%26CustomerFeeAmount%3d0%26CurrencyCo

de%3dUSD&Balance=868.1700

3. Payout to User (eWallet_Load)

Request:

fn=eWallet_Load&MerchantGUID=12345678-e2f9-4a01-bef1-258eb99c1b77

&MerchantPassword=12345&PartnerBatchID=test_load2&PoolID=test&arrAccounts=[UserName=IP001%26Am

ount=100.00%26Comments=commissions%26MerchantReferenceID=REFID001][UserName=IP587%26Amount=

200.00%26Comments=eWallet+Load%26MerchantReferenceID=REFID002]&CurrencyCode=USD

Response:

response=m_Code%3dNO_ERROR%26m_Text%3dOK%26LogTransactionID%3d0%26TransactionRefID%3d0%26

ACHTransactionID%3d0%26ProcessorTransactionRefNumber%3d%26CustomerFeeAmount%3d0%26CurrencyCo

de%3d

4. Add Invoice to User (eWallet_AddCheckoutItems)

Request:

fn=eWallet_AddCheckoutItems&MerchantGUID=12345678-e2f9-4a01-bef1-

258eb99c1b77&MerchantPassword12345&UserName=IP001&arrItems=[Amount=10.79%26CurrencyCode=USD

%26ItemDescription=Payment 1%26MerchantReferenceID=MyDatabaseTransactionRef1

%26UserReturnURL=http%3a%2f%2fwww.mysite.com%2fThankyou.aspx%26MustComplete=true][Amount=15.

79%26CurrencyCode=USD%26ItemDescription=Payment 2%26MerchantReferenceID=

MyDatabaseTransactionRef2%26UserReturnURL= http%3a%2f%2fwww.mysite.com%2fThankyou.aspx

%26MustComplete=false]

Response:

response=m_Code%3dNO_ERROR%26m_Text%3d%26LogTransactionID%3d0%26TransactionRefID%3d0%26AC

HTransactionID%3d0%26ProcessorTransactionRefNumber%3d%26CustomerFeeAmount%3d0%26CurrencyCode

%3d

29

Web Service JSON Adapter
Web Service JSON Adapter can be used to execute web service functions by posting parameters in JSON format.

To send JSON request please use HTTP POST method to test or production JSON adapter URL.

Test JSON Adapter URL:

https://testewallet.com/eWalletWS/ws_JsonAdapter.aspx

Production JSON Adapter URL:

https://www.i-payout.net/eWalletWS/ws_JsonAdapter.aspx

JSON Request Format:

{"fn":"web service function name", “parameter_name”:”parameter_value”}

• fn (function Name): name of web service function, like: eWallet_RegisterUser (name of the function

must match any function outlined in this document)

• parameter_name & parameter_value: function parameters – same as input fields in this documentation

per function. Please refer to the web service WSDL file for correct names of parameters. All required

parameters should be passed, all missed parameters will be treated as: null, false or 0.

JSON Response Format:

Response format will also be in JSON format. It consists of Response structure with each member values.

Examples:

1. Register user (eWallet_RegisterUser)

Request JSON:

{"fn":"eWallet_RegisterUser","MerchantGUID":"12345678-e2f9-4a01-bef1-

258eb99c1b77","MerchantPassword":"1a#@Sdr","UserName":"JsonTestUser1","FirstName":"John","LastName"

:"Doe","CompanyName":"","Address1":"2500 E Hallandale Beach","Address2":"Suite 800","City":"Hallandale

beach","State":"FL","ZipCode":"33009","Country2xFormat":"US","PhoneNumber":"9545133150","CellPhoneNu

mber":"","EmailAddress":"dharmendar@i-

payout.com","SSN":"","CompanyTaxID":"","GovernmentID":"","MilitaryID":"","PassportNumber":"","DriversLice

nse":"","DateOfBirth":"1980-01-

01T00:00:00","WebsitePassword":"","DefaultCurrency":"","SkipAutoSVCOrder":true,"PreferredLanguage":"","Is

BusinessUser":false,"BusinessUserName":""}

Successful Response JSON:

{"response":{"m_Code":0,"m_Text":"OK","LogTransactionID":0,"TransactionRefID":230004,"ACHTransactionID":

0,"ProcessorTransactionRefNumber":"","CustomerFeeAmount":0.0,"CurrencyCode":null}}

https://www.i-payout.net/eWalletWS/ws_JsonAdapter.aspx

30

Error Response JSON:

{"response":{"m_Code":-1,"m_Text":"Country should be in 2 letter format, like

US","LogTransactionID":0,"TransactionRefID":0,"ACHTransactionID":0,"ProcessorTransactionRefNumber":"","Cu

stomerFeeAmount":0.0,"CurrencyCode":null}}

2. Payout to User (eWallet_Load)

Request JSON:

{"fn":"eWallet_Load","MerchantGUID":"12345678-e2f9-4a01-bef1-

258eb99c1b77","MerchantPassword":"12#@Sdr","PartnerBatchID":"635330851376218624","PoolID":"6353308

51376218624","arrAccounts":[{"UserName":"ip123","Amount":10.50,"Comments":"Test

Json","MerchantReferenceID":"15645121"},{"UserName":"ip001","Amount":20.50,"Comments":"Test

Json","MerchantReferenceID":"1455645121"}],"AllowDuplicates":true,"AutoLoad":false,"CurrencyCode":"USD"}

Successful Response JSON:

{"response":{"m_Code":0,"m_Text":"OK","LogTransactionID":0,"TransactionRefID":32493,"ACHTransactionID":0,

"ProcessorTransactionRefNumber":"","CustomerFeeAmount":0.0,"CurrencyCode":null}}

Error Response JSON:

{"response":{"m_Code":-2,"m_Text":"Customer with user name nousername is not

found","LogTransactionID":0,"TransactionRefID":0,"ACHTransactionID":0,"ProcessorTransactionRefNumber":"",

"CustomerFeeAmount":0.0,"CurrencyCode":null}}

3. Add Invoice to User (eWallet_AddCheckoutItems)

Request JSON:

{"fn":"eWallet_AddCheckoutItems","MerchantGUID":"12345678-e2f9-4a01-bef1-

258eb99c1b77","MerchantPassword":"12#@Sdr","UserName":"ip123","arrItems":[{"Amount":10.50,"CurrencyC

ode":"USD","ItemDescription":"Test Payment using

Json","MerchantReferenceID":"5487adfdsf","UserReturnURL":"","MustComplete":false,"Status":0,"IsSubscriptio

n":false,"SubscriptionAmount":0.0,"SubscriptionDaysToStart":0}],"AutoChargeAccount":false}

Successful Response JSON:

{"response":{"m_Code":0,"m_Text":"","LogTransactionID":0,"TransactionRefID":0,"ACHTransactionID":0,"Proces

sorTransactionRefNumber":"","CustomerFeeAmount":0.0,"CurrencyCode":null},"arrItemsResponse":[{"m_Code"

:-

57,"m_Text":"","LogTransactionID":183078,"TransactionRefID":91506,"ACHTransactionID":0,"ProcessorTransact

ionRefNumber":"","CustomerFeeAmount":0.0,"CurrencyCode":"USD"}]}

Error Response JSON 1:

{"response":{"m_Code":-2,"m_Text":"User not

found","LogTransactionID":0,"TransactionRefID":0,"ACHTransactionID":0,"ProcessorTransactionRefNumber":"",

"CustomerFeeAmount":0.0,"CurrencyCode":null},"arrItemsResponse":[]}

31

Error Response JSON 2:

{"response":{"m_Code":0,"m_Text":"","LogTransactionID":0,"TransactionRefID":0,"ACHTransactionID":0,"Proces

sorTransactionRefNumber":"","CustomerFeeAmount":0.0,"CurrencyCode":null},"arrItemsResponse":[{"m_Code"

:-3,"m_Text":"Such Reference ID: adsf898 already exists in the

system","LogTransactionID":0,"TransactionRefID":0,"ACHTransactionID":0,"ProcessorTransactionRefNumber":""

,"CustomerFeeAmount":0.0,"CurrencyCode":null}]}

4. Auto login User (eWallet_RequestUserAutoLogin)

Request JSON:

{"fn":"eWallet_RequestUserAutoLogin","MerchantGUID":"12345678-e2f9-4a01-bef1-

258eb99c1b77","MerchantPassword":"12#@Sdr","UserName":"ip123"}

Successful Response JSON:

{"response":{"m_Code":0,"m_Text":"OK","LogTransactionID":0,"TransactionRefID":0,"ACHTransactionID":0,"Pro

cessorTransactionRefNumber":"b0eb897c-4fb2-40ee-bbc6-

5a71bcf46fcb","CustomerFeeAmount":0.0,"CurrencyCode":null}}

Error Response JSON:

{"response":{"m_Code":-2,"m_Text":"User not

found","LogTransactionID":0,"TransactionRefID":0,"ACHTransactionID":0,"ProcessorTransactionRefNumber":"",

"CustomerFeeAmount":0.0,"CurrencyCode":null}}

5. Get Customer Balance (eWallet_GetCurrencyBalance)

Request JSON:

{"fn":"eWallet_GetCurrencyBalance","MerchantGUID":"12345678-e2f9-4a01-bef1-

258eb99c1b77","MerchantPassword":"12#@Sdr","UserName":"ip123","CurrencyCode":"USD"}

Successful Response JSON:

{"response":{"m_Code":0,"m_Text":"OK","LogTransactionID":0,"TransactionRefID":0,"ACHTransactionID":0,"Pro

cessorTransactionRefNumber":"","CustomerFeeAmount":0.0,"CurrencyCode":"USD"},"Balance":1710.5600}

Error Response JSON:

{"response":{"m_Code":-2,"m_Text":"User not

found","LogTransactionID":0,"TransactionRefID":0,"ACHTransactionID":0,"ProcessorTransactionRefNumber":"",

"CustomerFeeAmount":0.0,"CurrencyCode":null},"Balance":0.0}

32

PHP Examples

eWallet_RegisterUser

$url = "https://testewallet.com/eWalletWS/ws_Adapter.aspx";

$post = "fn=eWallet_RegisterUser&MerchantGUID=MERCHANT_ID&MerchantPassword= PASSWORD

&UserName=USERNAME&FirstName=WSTest&LastName=Test&CompanyName=&Address1=2500 E Hallandale

Beach Blvd&Address2=Suite 800&City=Hallandale Beach&State=FL&ZipCode=33009&Country2xFormat=US

&PhoneNumber=954-123-4567&CellPhoneNumber=&EmailAddress=user@aol.com&SSN=123-45-

6789&CompanyTaxID=&GovernmentID=&MilitaryID=&PassportNumber=&DriversLicense=&DateOfBirth=9/18/1

945&WebsitePassword=password&DefaultCurrency=USD”;

$ch = curl_init($url);

curl_setopt($ch, CURLOPT_SSL_VERIFYPEER, false);

curl_setopt($ch, CURLOPT_POST, 1);

curl_setopt($ch, CURLOPT_POSTFIELDS, $post);

curl_setopt($ch, CURLOPT_FOLLOWLOCATION, 1);

curl_setopt($ch, CURLOPT_HEADER, 0);

curl_setopt($ch, CURLOPT_RETURNTRANSFER, 1);

$ips_response = curl_exec($ch);

curl_close($ch);

parse_str($ips_response);

//echo $response;

parse_str($response);

echo $m_Code; // if success it should be NO_ERROR

eWallet_GetCurrencyBalance

$url = "https://testewallet.com/eWalletWS/ws_Adapter.aspx";

$post = "fn=eWallet_GetCurrencyBalance&MerchantGUID=MERCHANT_ID&MerchantPassword=PASSWORD

&UserName=USERNAME&CurrencyCode=USD";

$ch = curl_init($url);

curl_setopt($ch, CURLOPT_SSL_VERIFYPEER, false);

curl_setopt($ch, CURLOPT_POST, 1);

curl_setopt($ch, CURLOPT_POSTFIELDS, $post);

curl_setopt($ch, CURLOPT_FOLLOWLOCATION, 1);

curl_setopt($ch, CURLOPT_HEADER, 0);

curl_setopt($ch, CURLOPT_RETURNTRANSFER, 1);

$ips_response = curl_exec($ch);

curl_close($ch);

33

parse_str($ips_response);

//echo $response;

parse_str($response);

echo $m_Code; // if success it should be NO_ERROR

echo $Balance; // user’s eWallet balance

How to reply with “OK” on invoice notifications:

<?php echo "OK"; exit; ?>

34

Appendix A – Status Constants

Name Value Description

NO_ERROR 0 Success.

INTERNAL_ERROR -1 Internal error. Can happen if something is not set up
right or database error.

CUSTOMER_NOT_FOUND -2 User not found.

GENERAL_ERROR -3 Any other error, look at m_Text field for an error
description.

INVALID_PASSWORD -4 Invalid password.

ACCOUNT_NOT_FOUND -5 Account not found.

NOT_AVAILABLE_FOR_THIS_TYPE -6 Functionality is not available for this type of account.

INVALID_CLIENT_CREDENTIALS -7 Invalid client credentials.

CUSTOMER_ALREADY_LOGGED_IN -8 User already logged in.

METHOD_IS_AVAILABLE_BUT_OBSOLETE -9 Method is declared unnecessary/obsolete. Please
contact IPS.

USER_NOT_LOGGED_IN -10 User is not logged in or timeout occurred.

PROCESSORID_NOT_FOUND -11 Processor is not found. It means that there is a
problem with configuration in merchant’s profile.
Please contact IPS.

USERNAME_EXISTS -12 A user with this User Name already exists. It may
happen during the registration.

EMAIL_EXISTS -13 A user with this email already exists.

SSN_EXISTS -14 A user with this SSN already exists.

INSUFFICIENT_FUNDS -15 Insufficient funds.

NO_DEFAULT_CARD -16 There is no default prepaid card set up for this user.

CARD_NOT_EXISTS -17 Card does not exist.

CARD_ALREADY_ASSIGNED -18 Card is already assigned to another user.

INVALID_PIN -19 Invalid PIN.

PROCESSORID_FOR_CARD_NOT_FOUND -20 Cannot find Processor ID for the card number.

ALIAS_ALREADY_EXISTS -21 This alias/nick name already exists for this user. All
aliases must be unique per user.

ERROR_SAVING_CUSTOMER_DETAILS -22 Error saving customer details.

DRIVERLICENSE_EXISTS -23 Driver's license already exists. All DL must be unique
per merchant.

PASSPORT_EXISTS -24 Passport number already exists.

CARD_ALREADY_ASSIGNED_TO_YOU -25 Prepaid card is already assigned to the user.

INVALID_CARD_NUMBER -26 Invalid card number.

CARD_ALREADY_ACTIVATED -27 Card is already activated.

CARD_STATUS_NOT_ISSUED_NOR_ACTIVE -28 Card status is not issued or not active.

CARD_NOT_ACTIVE -29 Card is not Active.

PROCESSOR_ERROR -30 Specific processor's error.

NETWORK_FAILURE -31 Network failure.

INVALID_ALIAS -32 Invalid alias.

35

CANT_APPEND_TO_DESCRIPTION -33 Cannot append text to transaction description.

CARD_ALREADY_ACTIVATED_NEED_PIN -34 Card is already activated. PIN is required.

PAL_ALIAS_ALREADY_EXISTS -35 Such pal's alias already exists.

PAL_IS_ALREADY_ADDED -36 You already added this pal.

PAL_INVALID_EMAIL -37 Cannot find pal by such email.

TOTAL_AMOUNT_EXCEEDS_MAX_BALANCE -38 Resulting total balance exceeds the max balance
allowed on the Card.

TOTAL_MONTH_TRANSFER_EXCEEDS
_MAX_MONTHLY_TRANSFER

-39 Total monthly transfer exceeds the max monthly
transfer allowed.

TOTAL_DAY_TRANSFER_EXCEEDS
_MAX_DAY_TRANSFER

-40 Total daily transfer exceeds the max daily transfer
allowed.

ALL_ACHS_FAILED -41 All ACHs failed.

CANNOT_RETRIEVE_PIN -42 Cannot retrieve PIN.

CANNOT_INSERT_BANK_ACCOUNT -43 Cannot insert bank account.

CANNOT_TRANSFER_TO_BANK_ACCOUNT -44 Cannot transfer to bank account.

INVALID_BANKID -45 Invalid Bank ID.

INVALID_VIRTUAL_ACCOUNT_ID -46 Invalid eWallet ID.

INVALID_CARDID -47 Invalid Card ID.

INVALID_ACH_PROCESSOR -48 There is no ACH Processor defined in the database.

MILITARY_ID_ALREADY_EXISTS -49 Military id already exists.

INCOMPATIBLE_SOURCE_AND
_DESTINATION_ACCOUNTS

-50 Incompatible source and destination accounts.

INVALID_PSEUDODDA_NUMBER -51 The Pseudo DDA number and/or the routing number
of the card are/is invalid.

MOBILE_PASSWORD_IS_NOT_SET -52 Mobile password is not setup.

INVALID_MERCHANT -53 Invalid Merchant.

NOT_ACTIVE -54 Not active.

NOT_PAID -55 Not paid.

NO_RECORDS_FOUND -56 No records found.

PENDING -57 Transaction is Pending.

PROCESSING -58 Transaction is Processing.

EMAIL_REQUIRED -59 Email is required

INVALID_COUNTRY_CODE -60 Invalid Country Code

ACCESS_DENIED -61 Access permission is required to use this function

36

Appendix B – Currency Codes

Supported Currency Codes: (if you do not see your currency code, please contact IPS to include it)

USD United States Dollars

EUR Euro

GBP Great Britain Pound

AUD Australian Dollars

JPY Japanese Yen

CAD Canadian Dollars

CNY Chinese Yuan

HKD Hong Kong Dollar

CHF Swiss Franc

NZD New Zealand Dollar

THB Thai Baht

SGD Singapore Dollar

Appendix C – Transaction Status Codes

• Declined – Transaction has been declined.

• Pending – Transaction is pending. Usually ACH transactions have such status when they are sent to the

ACH processor but have not settled yet.

• Settled – Transaction is settled.

• Unknown – Transaction status is unknown or cannot be retrieved.

• Voided – Transaction has been voided (usually by manager).

• Unsent – Transaction has not been sent yet.

• Sent – Transaction has been sent to the processor.

• SentButNoReply – Transaction has been sent to the processor but there was no reply.

• Processing – Transaction is in a processing state.

• All – All transactions

37

Appendix D – Custom Objects
This section will describe the custom objects which are used in the above API functions.

eWalletLoad

Field Data Type Comment

UserName String eWallet user name of the customer

Amount Decimal Commission payout amount

Comments String Short description for the commission payout (user will see it in
a history page)

MerchantReferenceID String Reference id from merchant’s platform. MerchantReferenceID
can be used in eWallet_FindTransaction method.

CustomerResponse

Field Data Type Comment

UserName String eWallet user name

CustomerGuid String eWallet user guid

IsActivated Boolean True: Customer is activated to login

Email String Customer email

FirstName String Customer first name

LastName String Customer last name

CompanyName String Customer company name

Phone String Customer phone number

CellPhoneNumber String Customer cell number

eWalletID String Customer eWallet ID

Address1 String Customer address

Address2 String Customer address2

State String Customer state

City String Customer city

ZipCode String Customer zip code

Country String 2 character Customer country code ie. ‘US’

DateOfBirth DateTime Customer date of birth

IsSuspended Boolean True: Customer is suspended

IsInfoVerified Boolean True: Customer profile is verified on the first login

IsClosed Boolean True: Customer eWallet is closed

CreatedDate DateTime Customer registered date

IsAgreedToFees Boolean True: Customer has agreed to eWallet fees

IsBusiness Boolean True: Customer eWallet is of type “Business”

IsInvalidEmail Boolean True: Customer email address is invalid

PreferredLanguage String Language code for the emails from eWallet

SVCShippingAddress String Shipping address for the ordered stored value card

38

CheckoutItem

Field Data Type Comment

Amount Decimal Cost of the item

CurrencyCode String Currency code, like USD

ItemDescription String Description of the item

MerchantReferenceID String Reference ID in your system. It will be used in call back once
item is paid

UserReturnURL String If payment was done instantly (via credit card), user will have
an option to click on this URL to redirect back to merchant.

MustComplete Boolean Flag to see if payment must be complete. For example: if user
has to pay for initial subscription, this flag should be true. If it
is not mandatory for users to complete a payment, set it to
false.

IsSubscription Boolean True is this invoice is a monthly subscription.

SubscriptionAmount Decimal monthly subscription amount

SubscriptionDaysToStart int Start day of a subscription. If 0 – next payment will be in a
month from today. If > 0 then next time will be: today +
SubscriptionDaysToStart. It could be used in scenario: 14 days
free, then 19.99/m

UserBalance

Field Data Type Comment

UserName String eWallet user name of the customer

Amount Decimal Balance amount

CurrencyCode String 3 character currency code like ‘USD’

RecurringPayment

Field Data Type Comment

RecurringPaymentID Int64 IPS reference id for this recurring payment

Description String Small description about the recurring payment

Period String Recurring payment period like ‘monthly’

Amount Decimal Amount for the recurring payment

CurrencyCode String Currency code for the recurring payment like ‘USD’

RetParams String Custom return parameters that will be passed back (encoded)
to the notification_url

StartDate DateTime (MM/dd/yyyy) Start Date of the recurring payment

MerchantReferenceID String Reference number for this recurring payment from your system

IsActive Boolean False: Recurring payment is cancelled

CancelDueToInactivity Boolean True: Recurring payment is cancelled by system because of not
paid by user

CancelByUser Boolean True: Recurring payment is cancelled by user

CancelReason String Reason for the recurring payment cancellation

39

Appendix E – Custom Data Types (Enums)
This section will describe the custom variables (Enums) which are used in the above API functions.

CustomerAccountStatus

Value Value Description

Closed -1 eWallet is closed. User still can login only if there is balance on the
account. System will send weekly emails saying to move funds out and
user might be charged with a dormant fee.

Suspended 0 eWallet is suspended. User cannot login at any case.

Open 1 eWallet is alive. User can send/receive funds.

